Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

نویسندگان

  • Ji Eun Song
  • Eun Chul Cho
چکیده

We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow control with hydrogels.

With the advent of the genomic revolution and the sequencing of the human genome complete, the majority of pharmaceuticals under development are proteins. Consequently, new techniques to more effectively administer these new protein therapeutics need to be developed. One method that is gaining popularity in the research community involves the use of responsive hydrogel actuators for flow contro...

متن کامل

ساخت، مشخصه یابی و بررسی خواص مکانیکی و زیستی داربست هیبریدی نانوکامپوزیتی استخوانی از جنس آپاتیت/ ژلاتین- کیتوسان به روش زیست تقلیدی

In this project, we prepared biomimetic nanocomposite scaffolds from gelatin and chitosan and hydroxyapatite and subsequently the scaffolds were evaluated by common used bulk technique. For this purpose, the nanocomposite hydrogel/apatite bone tissue engineering scaffolds were fabricated using applied biomimetic method accompanied with freeze drying technique. The apatite was precipitated usi...

متن کامل

Introducing a New Experimental Islet Transplantation Model using Biomimetic Hydrogel and a Simple High Yield Islet Isolation Technique

Background: Islet transplantation could be an ideal alternative treatment to insulin therapy for type 1 diabetes Mellitus (T1DM). This clinical and experimental field requires a model that covers problems such as requiring a large number of functional and viable islets, the optimal transplantation site, and the prevention of islet dispersion. Hence, the methods of choice for isolation of functi...

متن کامل

Cytotoxity Assessment of Gold Nanoparticle-Chitosan Hydrogel Nanocomposite as an Efficient Support for Cell Immobilization: toward Sensing Application

Cell-based biosensors have become a research hotspot in biosensors and bioelectronics fields. The main feature of cell-based biosensors is the immobilization of living cell on the surface of transducers. Different types of polymers which are used as scaffolds for cell growth should be biocompatible and have reactive functional groups for further attachment of biomolecules. In this work, the cel...

متن کامل

Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer

We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual nanoparticles. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016